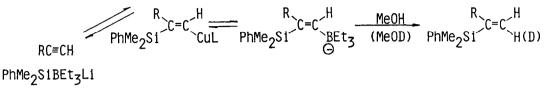
## TRANSITION-METAL CATALYZED REGIOSELECTIVE ADDITION OF PhMe<sub>2</sub>SiBEt<sub>3</sub>Li AND Bu<sub>3</sub>SnBEt<sub>3</sub>Li TO ACETYLENIC COMPOUNDS IN THE PRESENCE OF METHANOL


Kyoko Nozaki, Kuni Wakamatsu, Tsuyoshi Nonaka, Werner Tückmantel, Koichiro Oshima<sup>\*</sup>, and Kiitiro Utimoto Department of Industrial Chemistry, Faculty of Engineering, Kyoto University, Sakyo-ku, Kyoto 606 Japan

Abstract: Treatment of acetylenic compounds with  $PhMe_2SiBEt_3Li$  in the presence of a transition-metal catalyst affords vinylsilanes in good yields. Coexistence of methanol as a proton source is essential for the completion of the reaction.

Extensive studies have been explored with the reactions of organoboron compounds such as hydroboration or haloboration.<sup>1</sup> Several compounds containing B-Si bond have been synthesized;<sup>2</sup> nevertheless, no examples are known for their synthetic utility. Here we wish to report that silylboron and stannylboron compounds,  $PhMe_2SiBEt_3Li$  and  $Bu_3SnBEt_3Li$ , add to triple bonds effectively to give vinylsilanes or vinylstannanes, respectively, under good control of the regio- and stereoselectivity.<sup>3</sup>

The reaction of 1-dodecyne with 2 equiv. of  $PhMe_2SiBEt_3Li$  in the presence of a catalytic amount of CuCN afforded a mixture consisting of the starting material (35% recovery) and the desired vinylsilanes (1-dimethyl-phenylsily1-1-dodecene:2-sily1 isomer = 64:36, 50% combined yield) after quenching the reaction mixture with 1N HCl. Prolonged reaction time could not improve the conversion. In contrast, treatment of propargyl alcohol under the same reaction conditions provided (E)-3-dimethylphenylsily1-2-propen-1-ol as a single product in 87% yield. These results indicated that (1) the reaction of acetylenic compounds with  $PhMe_2SiBEt_3Li$  is reversible, and the equilibrium favors only marginally the intermediate vinylborate,<sup>4</sup> and (2) in the presence of a proton source, the equilibrium is shifted to the right by protonation of the intermediate. Thus, it was anticipated that the addition of methanol to the reaction mixture of 1-dodecyne and PhMe\_2SiBEt\_3Li would force the reaction go to completion, and this was indeed

the case. Water, diethyl malonate, and phenol were also effective to complete the reaction.<sup>5</sup> We are tempted to assume the following reaction scheme. Weak acids such as water, methanol, and phenol react easily only with the intermediary vinylcopper compound or vinylborate, but are reluctant to react with the silylborate as well as with dimethylphenylsilylcopper reagents.<sup>6</sup>



A typical procedure follows. The addition of a hexane solution of triethylborane<sup>7</sup> (1.0 M, 2.0 ml, 2.0 mmol) to a greenish black THF solution of PhMe<sub>2</sub>SiLi (0.75 M, 2.7 ml, 2.0 mmol) at 0°C gave a decolorized pale brown solution. Its <sup>11</sup>B-NMR spectrum showed a signal at -36.8 ppm, the high field shift of which (Et<sub>3</sub>B: 68.5 ppm) reveals the formation of the ate complex, PhMe<sub>2</sub>SiBEt<sub>3</sub>Li.<sup>8</sup> A catalytic amount of CuCN (0.1 mmol) was added, and the color of the solution immediately changed to black. Then a solution of 1-dodecyne (0.17 g, 1.0 mmol) and methanol (0.41 ml, 10 mmol)<sup>9</sup> in THF (2 ml) was added, and the whole was stirred at 25°C for 1 h. Extractive workup (AcOEt, 1N HCl) and purification by preparative tlc on silica gel gave a mixture of 1- and 2-dimethylphenylsily1-1-dodecene in 89% combined yield (1-sily1 isomer:2-sily1 isomer = 61:39). Representative results are summarized in Table 1.

CuI, CuBr·SMe<sub>2</sub>, and CoCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> (the latter for terminal acetylenes only) also catalyze the reaction, while  $Pd(PPh_3)_4$ ,  $RuCl_2(PPh_3)_3$ , and NiCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> are not effective. The addition proceeds in cis fashion exclusively. The regioselectivity of the reaction heavily depends on the nature of the catalyst employed.  $CoCl_2(PPh_3)_2$  gives exclusively the 1silyl-1-alkene starting from 1-alkynes. Acetylenic compounds containing a hydroxyl group provide vinylsilanes selectively which have the silyl group on the carbon remote from the hydroxyl group.

The reaction has been extended to stannylboration of acetylenes. The results are also shown in Table 1. The uncatalyzed reaction of stannylboron compounds with acetylenes proceeded very slowly to give vinylstannanes in low yield (entry 14).<sup>11</sup> Catalysts such as CuCN and  $CoCl_2(PPh_3)_2$  were effective for this reaction.<sup>12</sup>

| R <sup>1</sup> C≡CR <sup>2</sup>        |                                                               | PhMe <sub>2</sub> SiBEt <sub>3</sub> Li<br>(Bu <sub>3</sub> SnBEt <sub>3</sub> Li)<br>THF/MeOH |                                                    | =C <sup>R2</sup><br>SiMe <sub>2</sub> Ph<br>I (SnBu <sub>3</sub> ) | $+ \begin{array}{c} R_{1}^{1} \\ R_{2}^{1} \\ R_{2}^{1} \\ R_{3}^{1} \\ R_{3}^{1}$ |
|-----------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Substrate                               |                                                               |                                                                                                | Catalaat                                           | b                                                                  | Ratio <sup>C</sup> of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Entry                                   | R <sup>1</sup>                                                | R <sup>2</sup>                                                                                 | Catalyst                                           | Yield (%)                                                          | I : II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| PhMe <sub>2</sub> SiBEt <sub>3</sub> Li |                                                               |                                                                                                |                                                    |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1                                       | <sup>n</sup> C <sub>10</sub> H <sub>21</sub>                  | н                                                                                              | CuCN                                               | 89                                                                 | 61 : 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2                                       |                                                               |                                                                                                | $CoCl_2(PPh_3)_2$                                  | 78                                                                 | 100 : 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3                                       | PhCH <sub>2</sub> OCH <sub>2</sub> CH                         | <sup>1</sup> 2 Н                                                                               | CuCN                                               | 91 <sup>d</sup>                                                    | 68 : 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4                                       |                                                               |                                                                                                | CoCl <sub>2</sub> (PPh <sub>3</sub> ) <sub>2</sub> | 57                                                                 | 100 : 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5                                       | <sup>n</sup> C <sub>5</sub> H <sub>11</sub>                   | <sup>n</sup> C <sub>5</sub> H <sub>11</sub>                                                    | CuCN                                               | 73                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6                                       | носн <sub>2</sub>                                             | н                                                                                              | CuCN                                               | 95                                                                 | 100 : 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7                                       | носн <sub>2</sub> сн <sub>2</sub>                             | Н                                                                                              | CuCN                                               | 95                                                                 | 78 : 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8                                       |                                                               |                                                                                                | CoCl <sub>2</sub> (PPh <sub>3</sub> ) <sub>2</sub> | 96                                                                 | 100 : 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 9                                       | $\operatorname{HOCH}_2\operatorname{CH}_2\operatorname{CH}_2$ | Н                                                                                              | CuCN                                               | 96                                                                 | 66 : 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 10                                      |                                                               |                                                                                                | CoCl <sub>2</sub> (PPh <sub>3</sub> ) <sub>2</sub> | 81                                                                 | 100 : 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 11                                      | носн <sub>2</sub>                                             | сн <sub>3</sub>                                                                                | CuCN                                               | 85                                                                 | 100 : 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 12                                      | HOCH <sub>2</sub> CH <sub>2</sub>                             | CH <sub>3</sub>                                                                                | CuCN                                               | 97                                                                 | 91:9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13                                      | $SiMe_3$                                                      | <sup>n</sup> C5 <sup>H</sup> 11                                                                | CuCN                                               | 66                                                                 | 100 : 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Bu <sub>3</sub> SnBEt <sub>3</sub> Li   |                                                               |                                                                                                |                                                    |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 14                                      | PhCH <sub>2</sub> OCH <sub>2</sub> CH                         | 2 <sup>H</sup>                                                                                 |                                                    | 24 <sup>e</sup>                                                    | 100 : 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 15                                      |                                                               | _                                                                                              | CuCN                                               | 40 <sup>e</sup>                                                    | 65 : 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 16                                      |                                                               |                                                                                                | CoCl <sub>2</sub> (PPh <sub>3</sub> ) <sub>2</sub> | 58 <sup>e</sup>                                                    | 80 : 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 17                                      | hoch <sub>2</sub> ch <sub>2</sub>                             | Н                                                                                              | CoCl <sub>2</sub> (PPh <sub>3</sub> ) <sub>2</sub> | 47                                                                 | 100 : 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Table 1. Transition-metal catalyzed silylboration and stannylboration in the presence of methanol $^{\rm a}$ 

a) Two mmol of  $PhMe_2SiBEt_3Li$  (or  $Bu_3SnBEt_3Li$ ) reagent, one mmol of acetylenic compound, 10 mol% of catalyst, and 10 mmol of methanol were employed. In the case of acetylenes having a hydroxyl group such as propargyl alcohol and 3-butyne-1-ol, the reaction proceeded without addition of methanol. However, 10 mmol of methanol was added to complete the reaction in a shorter period. b) Isolated yields unless otherwise noted. c) The ratios were determined by glpc and <sup>1</sup>H-NMR. d) See ref. 10. e) Glpc yields using  ${}^{n}C_{2}8H_{5}8$  as an internal standard (OV-17 5% on Uniport HP 60-80 mesh, 2 m, 250°C).

## References and notes

 H. C. Brown, "Organic Synthesis via Boranes," John Wiley & Sons, New York, 1975; B. M. Mikhailov, Yu. N. Bubnov, "Organoboron Compounds in Organic Synthesis," Harwood, New York, 1984; E. Negishi, "Organometallics in Organic Synthesis," Vol 1, John Wiley & Sons, New York, 1980; A. Suzuki, Topics in Current Chemistry, <u>112</u>, 67 (1983).

- 2. a) W. Biffar and H. Nöth, <u>Angew</u>. <u>Chem</u>., 92, 65 (1980) or <u>Int</u>. <u>Ed</u>. <u>Engl</u>., 19, 58 (1980).
  b) idem, <u>Chem</u>. <u>Ber</u>., 115, 934 (1982).
- Silylmetallation of acetylenic compounds has been reported. Y. Okuda, K. Wakamatsu, W. Tückmantel, K. Oshima, and H. Nozaki, <u>Tetrahedron Lett</u>., 26, 4629 (1985) and references cited therein.
- 4. The reversible nature of the reaction of PhMe<sub>2</sub>SiBEt<sub>3</sub>Li with acetylenic compounds has been clearly demonstrated by the following result. Treatment of the reaction mixture derived from 4-benzyloxy-l-butyne and PhMe<sub>2</sub>SiBEt<sub>3</sub>Li with allyl bromide (5 equivalents) gave allyldimethyl-phenylsilane in 90% yield along with the recovered starting material (85%).
- 5. Moderate stability of silylborates to water has been reported. See ref. 2b. The use of acetic acid instead of methanol as a proton source resulted in the formation of a mixture containing the vinylsilane and starting material, 1-dodecyne (1:1).
- Similar results have been reported in the reaction of stannylcopper and germylcopper reagents with acetylenic substrates. E. Piers and J. M. Chong, J. Chem. Soc. Chem. Commun. 1983, 934; S. D. Cox and P. Wudl, <u>Organometallics</u>, 2, 184 (1983); H. Oda, Y. Morizawa, K. Oshima, and H. Nozaki, <u>Tetrahedron Lett.</u>, 25, 3217 (1984).
- 7. We are grateful to Toyo Stauffer Chemical Co. for the gift of triethylborane.
- 8.  $\delta$  = -28.5 has been reported for Me<sub>3</sub>SiBMe<sub>3</sub>Li. See ref. 2a.
- 9. The reaction proceeded easily even in the presence of a large excess of methanol (100 equivalents).
- 10. (E)-4-Benzyloxy-1-dimethylphenylsilyl-1-butene: Bp 100°C (bath temp, 0.045 Torr); IR (neat) 3080, 2970, 2870, 1623, 1434, 1255, 1115, 992, 820 cm<sup>-1</sup>; NMR (CCl<sub>4</sub>)  $\delta$ 0.30 (s, 6H), 2.39 (dt, <u>J</u> = 5.5 and 6.5 Hz, 2H), 3.44 (t, <u>J</u> = 6.5 Hz, 2H), 4.39 (s, 2H), 5.73 (d, <u>J</u> = 18.5 Hz, 1H), 6.07 (dt, <u>J</u> = 18.5 and 5.5 Hz, 1H), 7.1-7.45 (m, 10H). Found: C, 77.36; H, 8.37%. Calcd for C<sub>19</sub>H<sub>24</sub>OSi: C, 76.97; H, 8.16%. 2-Silyl isomer: IR (neat) 934 cm<sup>-1</sup>; NMR (CCl<sub>4</sub>)  $\delta$ 0.34 (s, 6H), 2.33 (t, <u>J</u> = 6.0 Hz, 2H), 3.30 (t, <u>J</u> = 6.0 Hz, 2H), 4.26 (s, 2H), 5.39 (m, 1H), 5.67 (m, 1H), 7.05-7.45 (m, 10H).
- 11. In contrast, silylboration did not proceed at all in the absence of transition-metal catalysts.
- 12. Financial support by the Ministry of Education, Science, and Culture, Japanese Government (Grant-in-aid for Special Project Research #60219015) is acknowledged.

(Received in Japan 28 January 1986)

2010